Fat content is an important nutritional and quality control parameter in the manufacture of animal feed, therefore a fast and reliable measurement is required for process optimisation. Nuclear Magnetic Resonance (NMR) relaxometry can determine fat content of animal feed in the presence of 9-14% moisture without pre-drying.

Method

Solvent extraction techniques are commonly used for determination of fat content. However, they tend to be slow, cumbersome, inaccurate and require skilled personnel. In addition, many of the often hazardous chemicals used are becoming increasingly unacceptable according to current international health, safety and environmental standards.

In contrast, NMR relaxometry is quick and easy to perform, simple to calibrate and not dependent on the sample matrix. Samples are simply loaded into pre-tared glass vials, weighed, conditioned, then inserted into the instrument, automatically starting the NMR analysis. The instrument returns the oil content values in less than one minute.

Calibration and Results

NMR relaxometry is used to determine the quantity of hydrogen protons present in the liquid components of the

sample. In animal feeds, water is bound to the solid matrix, while the oil is free: this difference allows the signals to be separated on the basis

Figure 1 shows the calibration graph with a standard error of 0.21% fat, using a measuring time of

32 seconds. This clearly demonstrates that a high quality calibration can easily be obtained, even with inhomogeneous samples.

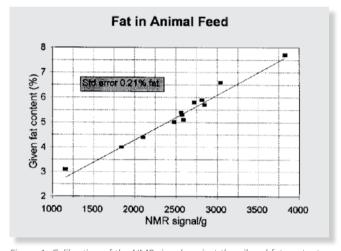


Figure 1: Calibration of the NMR signal against the oil and fat content

The Business of Science®

Value		Re	peat Me	asuremer	nts		MEAN SD					
5.59	5.59	5.62	5.64	5.66	5.68	5.64	5.64	0.03				
Value	Portion Measurements MEAN SD							SD				
5.82	5.88	5.80	5.68	6.00	6.04		5.88	0.15				

Results of instrument and sample repeatability

Instrument repeatability was then tested by measuring one sample six times without removing it from the instrument. Sample repeatability was tested by measuring five different portions of the same sample.

Instrument and sample repeatability were shown to be 0.03% and 0.15% respectively.

Recommended Instrument

The **MQC**-23 with a 0.55 Tesla (23 MHz) magnet, fitted with a 26mm diameter (10 ml sample) probe is a suitable instrument for this application. The Oil in Animal Feed package comprises:

- MQC-23 with a built-in computer operating under Microsoft®
 Windows® (no separate PC is required)
- MultiQuant software including RI Calibration, RI Analysis, and the EasyCal 'Oil in Animal Feed' application
- Three Calibration Maintenance Standards (CMSs) with nominal values of 10, 25 and 40% oil content for calibration maintenance and

quality control

- 26mm diameter sample vials
- PTFE sample holder
- PTFE sample packing tool
- Installation manual
- Method sheet

In addition to this package you will also require:

- A dry heater and aluminium block with holes for sample conditioning at 40°C
- A precision balance

The MQC-23 Oil and Fat in Animal Feed system offers many advantages:

- Minimal sample preparation
- Low maintenance
- Small benchtop footprint
- The sample tubes are recyclable, lowering consumable costs
- High signal sensitivity

Oxford Instruments Industrial Analysis

For more information please email: magres@oxinst.com

UK

Tubney Woods, Abingdon Oxon, OX13 5QX, UK

Tel.: +44 (0) 1865 393 200 Fax: +44 (0) 1865 393 333

China

Room 1/E, Building 1 Xiangzhang Garden No. 248 Donglan Road Shanghai 201102, China Tel: +86 21 6073 2925

Fax: +86 21 6360 8535

USA

300 Baker Avenue, Suite 150 Concord, Mass 01742, USA Tel: +1 978 369 9933

Fax: +1 978 369 8287

visit www.oxford-instruments.com for more information

www.oxford-instruments.com

This publication is the copyright of Oxford Instruments and provides outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. Oxford Instruments' policy is one of continued improvement. The company reserves the right to alter, without notice, the specification, design or conditions of supply of any product or service. Oxford Instruments acknowledges all trademarks and registrations. Microsoft and Windows are registered trademarks of the Microsoft Corporation in the United States and other countries. Ref. AF-10-12

The Business of Science®

